- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0002000001000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bresler, G (2)
-
Abbe E. (1)
-
Abbe, E (1)
-
Boix Adsera, E (1)
-
Boix-Adsera, E (1)
-
Boyce, Christopher M (1)
-
Brennan, M (1)
-
Brennan, M. (1)
-
Farinato, Raymond S (1)
-
Guo, Qiang (1)
-
Nagaraj, D (1)
-
Nagaraj, D R (1)
-
Nagaraj, D. (1)
-
Russ, Naimah M (1)
-
Sanghishetty, Jagan Mohan (1)
-
Spitler, Christopher (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abbe E.; Boix-Adsera, E; Brennan, M.; Bresler, G; Nagaraj, D (, Advances in Neural Information Processing Systems)This paper identifies a structural property of data distributions that enables deep neural networks to learn hierarchically. We define the ``staircase'' property for functions over the Boolean hypercube, which posits that high-order Fourier coefficients are reachable from lower-order Fourier coefficients along increasing chains. We prove that functions satisfying this property can be learned in polynomial time using layerwise stochastic coordinate descent on regular neural networks -- a class of network architectures and initializations that have homogeneity properties. Our analysis shows that for such staircase functions and neural networks, the gradient-based algorithm learns high-level features by greedily combining lower-level features along the depth of the network. We further back our theoretical results with experiments showing that staircase functions are learnable by more standard ResNet architectures with stochastic gradient descent. Both the theoretical and experimental results support the fact that the staircase property has a role to play in understanding the capabilities of gradient-based learning on regular networks, in contrast to general polynomial-size networks that can emulate any Statistical Query or PAC algorithm, as recently shown.more » « less
-
Abbe, E; Boix Adsera, E; Brennan, M; Bresler, G; Nagaraj, D. (, Advances in neural information processing systems)
An official website of the United States government

Full Text Available